Karuna Kar Nanda
Professor
Ph: Off: +91-80-2293 2996
Res: +91-80-2360 7696
Fax: +91-80-2360 7316
E-mail: nanda@mrc.iisc.ernet.in
Biography
Brief Biodata:
Dr. Nanda obtained his Ph. D.. from IOP, Bubhaneshwar. Following a short stint as a research associate at IOP he held post-doctoral positions at the Gerhard-Mercator University, Duisburg, Germany and The Dublin City University, Dublin, Ireland. He has been a faculty member of MRC since 2005.
Research Areas
Research:
- Synthesis of nanoparticles, nanowires and carbon nanotubes
- Electrical, optical and thermodynamic properties of different nanostructures
- Field emission and gas sensing behavior of different nanostructures
Research Areas:
Materials in the micrometer scale mostly exhibit physical properties the same as that of bulk form; however, materials in the nanometer scale may exhibit physical properties distinctively different from that of bulk. There are two major effects that are responsible for the change in nanoparticle properties due to the size variations. First, the intrinsic properties of the nanoparticles are transformed by quantum confinement. Below a critical size, there is substantial variation of fundamental optical and electrical properties with size, which can be realized when the energy level spacing exceeds the thermal energy. Second, the number of surface atoms in a nanoparticle is a large fraction of the total number of atoms and as a result, melting temperature suppression, solid-solid phase transition, etc. have been observed.
Synthesis: Efforts are being made to synthesize nanoparticles, nanowires and carbon nanotubes by simple methods. Metal oxide nanowires with very large aspect ratio have already been achieved simply by heating the metal in air atmosphere. We have also successfully synthesized millimeter long carbon nanotubes by a pyrolysis technique.
Properties: The properties of a material decide its application. As the size of a material is reduced, the band gap increases, metallic systems behave like semiconductors, the particles melts at low temperature. Therefore, it is essential to investigate different properties of nanostructures to ascertain their applications at different conditions. Electrical, optical and thermodynamic properties of different nanostructures are being investigated.
Field emission: Field emission (FE) is a unique quantum-mechanical effect where electrons tunnel from condensed matter into a vacuum. FE is of great commercial interest in flat panel displays, x-ray sources, and other vacuum microelectronic devices. In past decades, research in this area mainly focused on carbon-based materials because of their high mechanical stability, good conductivity and negative electron affinity. One-dimensional (1D) nanostructured materials such as carbon nanotubes (CNTs)-were particularly thought to be good candidates for FE as they have the added advantages of high aspect ratio, which enhances the electric field on the sharp end of their structures. Many researchers consider ZnO 1D nanostructures as good field emitters and has been investigated intensively as a potential alternative for producing field emission with low threshold and high efficiency. Generally, ZnO 1D nanostructures have shown better field emission characteristics for needle-like structures because sharper tips increase the effective electric field at the tips. The other advantages of ZnO are that it is thermally stable and intrinsically oxidation resistant. Research on ZnO 1D nanostructures as field emitters has only recently begun, so their field emission characteristics have not been optimized sufficiently. Various 1D ZnO nanostructures-such as nanowires, nanoribbons, tetrapods-have been fabricated to investigate the FE behavior and is under progress.
Gas sensing: The use of sensors to monitor gas atmospheres represents a growing market resulting from strategies for intelligent process management, environmental protection and medicinal diagnostics as well as from the domestic, aerospace and automobile sector. Hence, the development of fast responding, sensitive and especially highly selective gas sensor materials is of major interest. SnO2 is an n-type semiconductor material and is one of the most investigated materials. The investigation on the gas sensing behavior of ZnO and CNTs is under progress.
Representative Publications
Recent Publications:
- P. Mahanandia, F. Simon, G. Heinrich and K. K. Nanda, Preparation of few layers of graphene sheets by one-step electrochemical method, Chem. Comm. (accepted)
- H. K. Sadhanala, J. Khatei and K. K. Nanda, Highly reproducible of carbon nanoparticles as white light phosphors and metal-free catalysts for the reduction of nitrophenol, RSC Adv., 11481-11485 , 4.(2014)
- S. L. Shinde and K. K. Nanda, Wide range temperature sensing using highly sensitive green-Luminescent ZnO and PMMA-ZnO film as non-contact optical probe, Angew. Chem., 11325-11328
- B. K. Barman and K. K. Nanda, The dual role of Zn/acid medium for one-step rapid synthesis of M@rGO (M= Au, Pt, Pd & Ag) hybrid nanostructures at room temperature, Chem. Comm., 8949, 4(2013).
- L. T. Singh, R. P. Sugavaneswar and K. K. Nanda, Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices, AIP Advances AIP Adv., 082106, 4(2013)
- A. Deka and K. K. Nanda, A comparison of ZnO films deposited on indium tin oxide and soda lime glass under identical conditions, AIP Adv., 062104, 3 (2013)
- Jaikrishna Khatei and K. K. Nanda, Various quantum mechanical concepts for confinement in semiconductor nanocrystals, Resonance 18(8)771, (2013)
- S. Pandey, G. K. Goswami and K. K. Nanda, Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reaction studies, Sci. Rep. 2082, 3(2013)
- R. P. Sugavaneswar and K. K. Nanda, Ultralong ZnO nanowires, Mat. Expr. , 185,(2013)
- B. K. Barman, P. Mahanandia and K. K. Nanda, An almost instantaneous reduction of graphene oxide for the synthesis of reduced graphene oxide, RSC Adv., 12621-12624, 3(2013)
- S. L. Shinde and K. K. Nanda, Towards the understanding the formation of micro/nano holes of Ge/GeO2 through phase mapping, Cryst. Eng. Comm., 4049-4053 , 15(2013)
- S. L. Shinde and K. K. Nanda, Excitation- and power- dependent luminescence from GeO2, Mat. Lett. , 1043-1046, 15(2013)
- S. Pandey, G. K. Goswami and K. K. Nanda, Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an optical sensor for ammonia detection, Carbohydrate Polymers, 229-234 , 94(2013)
- L. T. Singh, S. Bhattacharyya, A. K. Singh and K. K. Nanda, Mechanism for the compressive strain induced oscillations in the conductance of carbon nanotubes, Phys. Rev. Lett., 095504, 110(2013)
- G. K. Goswami, Ravi Nandan, B. Barman and K. K. Nanda, Excellent performance of Pt-free cathode alkaline direct methanol fuel cell at room temperature, J. Mat. Chem. A, 3133-3139 , 1(2013)
- S. L. Shinde and K. K. Nanda, Thermal oxidation strategy for the synthesis of phase- controlled GeO2 and photoluminescence characterization, Cryst. Eng. Comm., 1043-1046, 15(2013)
- G. K. Goswami, Ravi Nandan and K. K. Nanda, Growth of branched carbon nanotubes with doped/un-doped intratubular junctions by one-step co-pyrolysis, Carbon, 97-102 , 56(2013)
- R. P. Sugavaneswar, G. K. Goswami and K. K. Nanda, Doping by diffusion of dopants from the substrate: synthesis of doped ZnO nanowires, J. Mat. Chem., 1066-1069 , 1(2013)
- R. P. Sugavaneswar and K. K. Nanda, Uninterrupted and reusable source for the controlled growth of nanowires, Sci. Rep., 1172, 3 (2013)
- Sashi Kiran C. and K. K. Nanda, Enhancement of commercially-available thermal grease by multiwalled carbon nanotubes for electronic device applications, Adv. Mat. Lett., 22-25, 4 (2013)
Career Publications:
- P. J. Grabowska, R. T. Rajendra Kumar, E. McGlynn, K. K. Nanda, S. B. Newcomb, P. J. McNally, L. O’Reilly, J.-P. Mosnier, M. O. Henry, Growth and characterisation of epitaxially ordered Zinc Aluminate domains on c-Sapphire, Thin Solid Film (accepted).
- P. Mahanandia, P. N. Vishwakarma, K. K. Nanda, V. Prasad, S. V. Subramanyam, S. K. Dev and P. V. Satyam, Multiwall carbon nanotubes from pyrolysis of tetrahydrofuran, Bull. Mater. Res. 41, 2311 (2006).
- S. C. Vanithakumari and K. K. Nanda, Phenomenological predictions of cohesive energy and structural transition of nanoparticles, J. Phys. Chem. B 110, 1033 (2006).
- K. K. Nanda, A simple classical approach for the melting temperature of inert-gas nanoparticles, Chem. Phys. Lett. 419, 195 (2006).
- K. K. Nanda, Bulk cohesive energy and surface tension from the size-dependent evaporation study of nanoparticles, Appl. Phys. Lett. 87, 021909 (2005).
- J. Grabowska, A. Meaney, K. K. Nanda, J. -P. Mosnier, M. O. Henry, J. -R. Duclere and E. McGlynn, Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: limiting effects on device potential, Phys. Rev. B 71, 115439 (2005).
- J. Grabowska, K. K. Nanda, E. McGlynn, J. -P. Mosnier and M. O. Henry, Studying the growth conditions, the alignment and structure of the ZnO nanorods, Surface Coating and Technology 200, 1093 (2005).
- J. Grabowska, K. K. Nanda, E. McGlynn, J. -P. Mosnier and M. O. Henry, A. Beaucamp and A. Meaney, Synthesis and photoluminescence of ZnO nanowires/nanorods, J. Mater. Sci.: Mater. Electron. 16, 397 (2005).
- K. K. Nanda, F. E. Kruis, H. Fissan and S. N. Behera, Effective mass approximation for two extreme semiconductors: band gap of PbS and CuBr nanoparticles, J. Appl. Phys. 95, 5035 (2004).
- K. K. Nanda, A. Maisels, F. E. Kruis, H. Fissan and S. Stappert, Higher surface energy of free nanoparticles-Reply, Phys. Rev. Lett. 92 179602 (2004).
- K. Nanda, A. Maisels, F. E. Kruis, H. Fissan and S. Stappert, Higher surface energy of free nanoparticles, Phys. Rev. Lett. 91 106102 (2003).
- K. K. Nanda, F. E. Kruis and H. Fissan, Evaporation of free PbS nanoparticles: Evidence of Kelvin Effect, Phys. Rev. Lett. 89, 256103 (2002).
- K. K. Nanda and S. N. Sahu, Fractal pattern in binary semiconductors by electrochemical deposition, Europhys. Lett. 60, 397-402 (2002).
- K. K. Nanda, S. N. Sahu and S. N. Behera, A liquid-drop model for the size-dependent melting of low-dimensional systems, Phys. Rev. A 66, 013208 (2002).
- K. K. Nanda, F. E. Kruis, H. Fissan and M. Acet, Band gap-tuning of PbS nanoparticles by in-flight sintering of size classified aerosols, J. Appl. Phys. 91, 2315-2321 (2002).
- K. K. Nanda, F. E. Kruis and H. Fissan, Energy levels in semiconductor nanoparticles and nanowires, Nano Letters 1, 605-611 (2001).
- K. K. Nanda and S. N. Sahu, Self-assembled heterojunction between electrodeposited PbS nanoparticles and indium tin oxide substrate, Appl. Phys. Lett. 79, 2743-2745 (2001).
- K. K. Nanda, S. N. Behera and S. N. Sahu, Comment on “The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique. J. Phys.: Cond. Matter. 13, 2861-2864 (2001).
- K. K. Nanda and S. N. Sahu, One-dimensional quantum-confinement in electrodeposited PbS nanocrytsalline semiconductors. Adv. Mater. 13, 280-283 (2001).
- S. N. Sahu and K. K. Nanda, Semiconductor nanoparticles: Physics and Applications (Review Article) PINSA-A 67, 103-130 (2001).
- K. K. Nanda and S. N. Sahu, Photoluminescence of CdS nanocrystals: effect of aging, Solid State Commun. 111, 671-674 (1999).
- K. K. Nanda, S. N. Sarangi and S. N. Sahu, Visible light emission from CdS nanocrystals, J. Phys. D: Appl. Phys. 32, 2306-2310 (1999).
- B. K. Patel, K. K. Nanda and S. N. Sahu, Interface characterization of nanocrystalline CdS/Au junction by current-voltage and capacitance voltage studies, J. Appl. Phys. 85, 3666-3670 (1999).
- K. K. Nanda, S. N. Sarangi and S. N. Sahu, CdS nanocrystalline films: composition, surface, crystalline size, structural and optical absorption studies, Nanostr. Mater. 10, 1401-1410 (1998).
- K. K. Nanda, S. N. Sarangi, S. N. Sahu, S. K. Deb and S. N. Behera, Raman spectroscopy of CdS nanocrystalline semiconductors, Physica B 262, 31-39 (1998).
- K. K. Nanda, S. N. Sahu, R. K. Soni and S. Tripathy, Raman spectroscopy of PbS nanocrystalline semiconductors, Phys. Rev. B 58, 15405-15047 (1998).
- K. K. Nanda, S. N. Sarangi and S. N. Sahu, Measurement of surface roughness by atomic force microscopy and Rutherford backscattering spectrometry of CdS nanocrystalline films, Appl. Surf. Sci. 133, 293-297 (1998).
- K. K. Nanda, S. N. Sarangi, S. Mohanty and S. N. Sahu, Optical properties of CdS nanocrystalline films prepared by a precipitation technique, Thin Solid Films 322, 21-27 (1998).
- K. K. Nanda and S. N. Sahu, Study of CdS nanocrystallites by AFM and Raman scattering spectroscopy, Appl. Surf. Sci. 119, 50-54 (1997).
- K. K. Nanda, S. N. Sarangi and S. N. Sahu, CdS nanocrystals: an efficient light emitter, Current Science 72, 110-111 (1997).
- K. K. Nanda, Size-dependent melting of small particles: a classical approach, Eu. J. Phys. 19, 471-472 (1998).
- K. K. Nanda, N. Routra and D. Bhatta, Synthesis conditions and superconductivity in 123-type superconductors, J. Supercond. 11, 649-652 (1998).
- B. Kalta and K. K. Nanda, Magnetization of high-Tc superconductors, Pramana – J. Phys. 50, 459-462 (1998).
- K. K. Nanda, An extremely simple and inexpensive apparatus for detecting the superconducting transition, Eu. J. Phys. 19, 351-354 (1998).
- K. K. Nanda and B. Kalta, Three-dimensional XY scaling for three-dimensional superconductors, Phys. Rev. B 57, 123-125 (1998).
- B. C. Gupta and K. K. Nanda, Specific heat of high temperature superconductors: Role of | term in the Ginzburg-Landau free energy, Physica C 265, 228-232 (1996).
- K. K. Nanda, Temperature dependence of upper critical field and anisotropy of YBa2Cu3O7- δ , Physica C 265, 26-30 (1996).
- K. K. Nanda, Field dependence of specific heat in the mixed state of YBa2Cu3O7- δ, Physica C 245, 341-346 (1995).
- K. K. Nanda, Determination of the band gap of semiconductors from the electrical measurement on respective diodes, Ind. J. Phys. A 73, 245-248 (1999).
- K. K. Nanda, Current dependence of ideality factor of silicon diodes, Current Science 74, 234-237 (1998).
- K. K. Nanda and S. N. Sarangi, Electrical properties of 1N4007 silicon diode, Rev. Sci. Instrum. 68, 2904-2908 (1997).
- S. B. Ota and K. K. Nanda, The temperature dependence of the forward characteristics of 1N4007 silicon diode, Rev. Sci. Instrum. 65, 3289-3290 (1994).
Conference Papers & Proceedings:
- K. K. Nanda, F. E. Kruis, H. Fissan and M. Acet, Quantum confinement in size-classified PbS nanoparticles synthesized in the gas phase in ESF-NANO 1999 (Annual Scientific meeting), Duisburg, Germany.
- S. N. Sahu, S. N. Sarangi, D. Sahoo, B. Patel, S. Mohanty and K. K. Nanda, Size dependent properties and light emission from nanocrystalline semiconductors in Novel materials design and properties edited by B. K. Rao and S. N. Behera (Nova Publishers, New York, 1998), p235-245.
- K. K. Nanda, F. E. Kruis and H. Fissan, Band gap tuning of PbS nanoparticles, J. Aerosol Sci. 32, S237-S238 (2001).
- S. N. Behera, S. N. Sahu and K. K. Nanda, Optical properties of size quantized nanocrystalline CdS semiconductors, Ind. J. Phys. A 74, 81-87 (2000).
- S. N. Sahu, B. K. Patel, S. N. Behera and K. K. Nanda, Surface and interface properties of nanocrystalline semiconductors, Ind. J. Phys. A . 74, 93-97 (2000).
- K. K. Nanda, S. N. Sarangi and S. N. Sahu, Optical properties of CdS nanocrystalline semiconductors in Physics of Semiconductor Nanostructures edited by K. P. Jain (Narosa Publishing House, New Delhi, 1997).
- S. N. Sahu, S. N. Sarangi and K. K. Nanda, Quantum size effect and light emission from II-VI nanocrystalline semiconductors in Physics of Semiconductor Nanostructures edited by K. P. Jain (Narosa Publishing House, New Delhi, 1997).
- K. K. Nanda, F. E. Kruis and H. Fissan, A radial differential mobility analyzer for operation at low pressures, J. Aerosol Sci. 33, S1013-S1014 (2002).
- R. Groarke, J. Grabowska, K. K. Nanda, E. McGlynn, J. G. Vos, Spectroscopic Study of the Properties of Chemically Modified ZnO Nanowires, Proceedings of SPIE, 5826 (2005) 194 – 201.
- J. Grabowska, A. Meaney, K. K. Nanda, E. McGlynn, J.-P. Mosnier and M. O. Henry, Laterally and vertically grown ZnO nanostructures on sapphire, Proceedings of SPIE, 5824 (2005) 269 – 276.
- J. Grabowska, K. K. Nanda, R.T. Rajendra-Kumar, J. P. Mosnier, M.O. Henry, S. B. Newcomb, P. McNally, L. O’Reilly, X. Lu, E. McGlynn, Self-organized ZnAl2O4 nanostructures grown on c-sapphire, Proceedings of SPIE (to appear).
- K. K. Nanda, Vortex Overlapping: Magnetization and specific heat of high temperature supercondutors in Superconductivity Theoretical and Experimental Effects edited by K. N. Shrivastava (Nova Publisher, New York, 1996), p20-30.
- K. K. Nanda, Vortex overlapping in high temperature superconductors, Ind. J. Phys. A 70, 753-758 (1996).
- S. B. Ota, K. K. Nanda and S. N. Behera, Ginzburg-Landau theory of specific heat anomaly of high-Tc superconductors in magnetic field, Physica B, 194-196, 1387-1388 (1994).
- S. B. Ota and K. K. Nanda, A GPIB IEEE-488 based automated low temperature electrical resistivity measurement set up, Proc. of the Eighteenth National Systems Conference (NSC 94), edited by D. Anand Rao.
- K. K. Nanda, Low temperature diode thermometry, Proc. of the third National seminar on Physics and Technology of Sensors.
- R. Groarke, J. Grabowska, K. K. Nanda, Enda McGlynn, J. G. Vos, Spectroscopic Study of the Properties of Chemically Modified ZnO Nanowires, Proceedings of SPIE, 5826 (2005) 194 – 201.
- J. Grabowska, A. Meaney, K. K. Nanda, E. McGlynn, J.-P. Mosnier and M. O. Henry, Laterally and vertically grown ZnO nanostructures on sapphire, Proceedings of SPIE, 5824 (2005) 269 – 276.
- J. Grabowska, K. K. Nanda, R.T. Rajendra-Kumar, J. P. Mosnier, M.O. Henry, S. B. Newcomb, P.J. McNally, L. O’Reilly, Xu Lu, E. McGlynn, Superlattices and Microstructures (in press)
Students
Name | Position | Email ID |
Gokul Raj | Int. PhD | gokulraj@iisc.ac.in |
Kanhai Kumar | Int. PhD | kanhaikumar@iisc.ac.in |
Malti Kumari | PhD | maltikumari@iisc.ac.in |